高壓電纜的冷縮頭優于熱縮頭:高壓電纜敷設方式是溝管結合,在中間的頭安裝有電纜溝段夠,根據小編查看的資料,冷縮頭在電氣性能的穩定和防水方面相對于熱縮頭來說都特別的占優勢的,以前都是因為價格比較高的原因而沒有被使用,因為所做的工程不受限制,所以次使用冷縮的中間頭,后卻在投入后時間不長,就發生了擊穿,所以是認為是中間頭進入了水引起發生的,所以在這時候我們所使用的冷縮頭就會受到懷疑,在地下水位較高的地方,加上電纜溝排水不暢,因此市區內就會有多數電纜長期泡水運行,所以在選用的熱縮頭,發生的故障率是很小的。
絕緣和護套資料功能實驗:包含熱失重、熱沖擊、高溫壓力、低溫彎曲、低溫拉伸、低溫沖擊、阻燃功能等等。這些都是考察絕緣和護套的塑料資料的功能好壞,如熱失重實驗是檢測通過7天80℃的高溫老化后資料降解、揮發的程度;熱沖擊檢測在150℃高溫1h后經特殊卷繞的絕緣表面是否有開裂;高溫壓力檢測絕緣資料在通過高溫再冷卻后其彈性的堅持程度;所有的低溫實驗一般指在-15℃條件下其機械功能的變化,都是檢測線纜資料在低溫環境下是否變脆、易開裂或易拉斷等。別的電纜的阻燃功能勝能很重要,考察該項功能的實驗為不延燃實驗,即對按規范安裝的制品電纜用專門的火焰點燃一定的時間,待其火焰自行熄滅后檢查線纜被燒的情況,當然被燒掉的部分越少越好,闡明其燃燒性差,阻燃性好,越安全。
勿用錯特性抗阻。特性抗阻是高壓電纜的重要技術參數,常用的種類主要有75歐姆、50歐姆兩種,如果在使用過程中阻抗不匹配的話,會造成傳送信號的信噪比下降,圖像出現重影,惡化系統的頻率特性,數據誤碼率增大等。防止機械損傷。由于高壓電纜是由內、外兩個相互隔離的同心導體組成的,而且內、外導體的軸心還是相重合的,因此物理結構決定了高壓電纜一系列的特有性質,如因為外力因素而導致高壓電纜發生機械變形,就等于破壞了這種物理結構,必然就要改變其電氣的參數,會使其主要特性劣化,影響信號質量,為防止高壓電纜在規劃施工中受到機械損傷必須注意以下幾點:提高電纜端頭及接頭的安裝質量。防止高壓電纜與電力線并行從而遭受干擾。高壓電纜的機械強度有限,在施工安裝過程中不得強力拉拽。